Approximating Pareto frontier using a hybrid line search approach
نویسندگان
چکیده
The aggregation of objectives in multiple criteria programming is one of the simplest and widely used approach. But it is well known that this technique sometimes fail in different aspects for determining the Pareto frontier. This paper proposes a new approach for multicriteria optimization which aggregates the objective functions and uses a line search method in order to locate an approximate efficient point. Once the first Pareto solution is obtained, a simplified version of the former one is used in the context of Pareto dominance to obtain a set of efficient points, which will assure a thorough distribution of solutions on the Pareto frontier. In the current form, the proposed technique is well suitable for problems having multiple objectives (it is not limited to bi-objective problems) and require the functions to be continuous twice differentiable. In order to assess the effectiveness of this approach, some experiments were performed and compared with two recent well known population-based metaheuristics ParEGO [16] and NSGA II [7]. When compared to ParEGO and NSGA II, the proposed approach not only assures a better convergence to the Pareto frontier but also illustrates a good distribution of solutions. From a computational point of view, both stages of the line search converge within a short time (average about 150 milliseconds for the first stage and about 20 milliseconds for the second stage). Apart from this, the proposed technique is very simple, easy to implement and use to solve multiobjective problems.
منابع مشابه
Pareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملHybrid Line Search for Multiobjective Optimization
The aggregation of objectives in multiple criteria programming is one of the simplest and widely used approach. But it is well known that these techniques sometimes fail in different aspects for determining the Pareto frontier. This paper proposes a new line search based approach for multicriteria optimization. The objectives are aggregated and the problem is transformed into a single objective...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملGoal programming using multiple objective hybrid metaheuristic algorithm
In this paper, a Goal Programming (GP) model is converted into a multi-objective optimization problem (MOO) of minimizing deviations from fixed goals. To solve the resulting MOO problem, a hybrid metaheuristic with two steps is proposed to find the Pareto set’s solutions. First, a Record-to-Record Travel with an adaptive memory is used to find first non-dominated Pareto frontier solutions preem...
متن کاملApproximation and visualization of Pareto frontier: Interactive Decision Maps technique
An effective approach to decision support in multicriteria decision making (MCDM) problems characterized by three to eight decision criteria is described. The approach is based on approximating the feasible set in the criterion space (or a broader criterion set, which has the same Pareto frontier) and visualization of the Pareto frontier by interactive displaying bi-criterion slices of this set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 180 شماره
صفحات -
تاریخ انتشار 2010